Kurs suchen 👉

Data Scientist with Python

Haufe Akademie GmbH & Co. KG, Online-Kurs / Fernlehrgang
Durchführungsform
Live-Webinar
Nächster Starttermin
16 September, 2024 (+3 Starttermine)
Preis
5.176,50 EUR inkl. MwSt.
Webseite des Anbieters
Durchführungsform
Live-Webinar
Nächster Starttermin
16 September, 2024 (+3 Starttermine)
Preis
5.176,50 EUR inkl. MwSt.
Webseite des Anbieters
Für weitere Informationen stellen Sie gerne eine Informationsanfrage 👍

Beschreibung

Data Scientist with Python

Ziel

1. Basics of data analytics with Python

  • Working with the Data Lab
  • Basics and concepts in Python
  • Presentation of the tools pandas, matplotlib and Seaborn
  • Database queries with SQL Alchemy

2. Linear algebra

  • Mathematical background
  • Basic concepts of linear algebra
  • Calculation with vectors and matrices
  • Use of the Python library numpy

3. Probability distribution

  • Statistics in data science algorithms
  • Discrete and continuous distributions
  • Versioning code in Git

4. Supervised learning (regression)

  • Concepts of supervised learning
  • Using linear regression
  • Using the Python package sklearn
  • Understanding regression models
  • Evaluation of predictions
  • Bias variance trade-off and regularization
  • Measuring the quality of the model

5. Supervised learning (classification)

  • Introduction to classification algorithms
  • The k-Nearest Neighbors algorithm
  • Assessment of classification performance
  • Optimization of the parameters
  • Splitting the data into training and evaluation sets

6. Unsupervised learning (clustering)

  • Concepts of unsupervised learning
  • The k-Means algorithm
  • Evaluation of the performance metrics
  • Alternatives to k-means clustering

7. Unsupervised learning (dimension reduction)

  • Reducing dimensions in the data view
  • Principal Component Analysis (PCA)
  • Creating uncorrelated features from original data
  • Introduction to feature engineering

8. Identification and excluding outliers

  • Methods for detecting outliers
  • Criteria for unusual data points
  • Robust measures and reducing the influence of outliers

9. Collecting and merging data

  • Reading data from web pages and PDF documents
  • Use of regular expressions
  • Structuring text data before processing

10. Logistic regression

  • Concepts of logistic regression
  • Performance metrics for evaluation
  • Using non-numerical data in models

11. Decision trees and random forests

  • The concept of decision trees
  • Combining multiple models into ensembles
  • Methods for improving the quality of predictions

12. Support Vector Machines

  • Use of Support Vector Machines (SVM)
  • Introduction to Natural Language Processing (NLP)
  • Text classification with bag-of-words models

13. Neural networks

  • Basics of artificial neural networks
  • Basics of deep learning
  • Deeper understanding of neural network layers

14. Visualization and model interpretation

  • Derive and visualize functionalities of models
  • Methods for interpretation and visualization
  • Apply model-agnostic methods

15. Using distributed databases

  • Using the Python package PySpark
  • Reading data from distributed databases
  • Basics of big data analysis
  • Using machine learning algorithms in distributed systems

16. Exercise project

  • Work on a comprehensive exercise project independently
  • Solve a prediction problem using a larger data set
  • Preparation for the final project

17. Final project

  • Independent analysis of the data project
  • Presentation of results and 1:1 feedback session with mentoring team
  • Certificate for Data Analyst with Python
Möchten Sie mehr über diese Weiterbildung erfahren?

Kommende Starttermine

Wählen Sie aus 3 verfügbaren Startterminen

16 September, 2024

  • Live-Webinar
  • Online-Kurs / Fernlehrgang

28 Oktober, 2024

  • Live-Webinar
  • Online-Kurs / Fernlehrgang

9 Dezember, 2024

  • Live-Webinar
  • Online-Kurs / Fernlehrgang

Inhalte / Module

In this practice-oriented training course, you will learn how to carry out data analyses with large data sets independently.

You will learn how to use Python competently, how to use the programming language for data analysis and how to create effective visualizations.

You will learn how to connect different data sources, filter and merge data from them.

You will learn comprehensive methods, algorithms and technologies of machine learning and how to use them with Python packages.

You will learn everything you need to know about the use of deep learning and create an artificial neural network with multiple layers

After the training, you will be able to visualize company data in a meaningful way and make it interactively accessible in dynamic dashboards.

The technical entry hurdles are minimized by the use of Jupyter Notebooks, with which you can carry out the programming exercises directly in the browser.

Zielgruppe / Voraussetzungen

The online training course to become a Data Scientist with Python is suitable for anyone who wants to learn Python as a programming language and use it to carry out data analyses independently. No special requirements need to be met. The course is also suitable for career changers.

Infos anfordern

Stellen Sie jetzt eine Informationsanfrage

Kontaktieren Sie hier den Anbieter, um mehr über das Kursangebot Data Scientist with Python zu erfahren!

  Sie erhalten weitere Infos

  Unverbindlich

  Kostenfrei


reCAPTCHA logo Diese Webseite ist durch reCAPTCHA geschützt. Es gelten die Google Datenschutzbestimmungen und Nutzungsbedingungen.
Haufe Akademie GmbH & Co. KG
Munzingerstraße 9
79111 Freiburg

Haufe Akademie

Die Haufe Akademie setzt Standards im Bereich Weiterbildung im deutschsprachigen Raum und richtet sich an Fach- und Führungskräfte, die zukunftsorientiert denken. Unsere modernen Lerntechnologien und innovativen L&D Procurement Plattformen sind darauf ausgerichtet, Lernprozesse perfekt auf die dynamischen Anforderungen von heute...

Erfahren Sie mehr über Haufe Akademie GmbH & Co. KG und weitere Kurse des Anbieters.

Anzeige